Internal functions in the PSM-package.
APL.KF(THETA, Model, Pop.Data, LB = NULL, UB = NULL, GUIFlag = 0, longOutput = FALSE,
fast=TRUE,Linear=NULL)
APL.KF.gr(THETA, Model, Pop.Data, LB = NULL, UB = NULL, GradSTEP = 1e-04, GUIFlag = 0,
fast=TRUE,Linear=NULL)
APL.KF.individualloop(theta, OMEGA, Model, Data, GUIFlag = 0, fast=TRUE,Linear)
CutThirdDim(a)
ExtKalmanFilter(phi, Model, Data, outputInternals = FALSE)
ExtKalmanSmoother(phi, Model, Data)
IndividualLL.KF(eta, theta, OMEGA, Model, Data, fast=TRUE,Linear=NULL)
IndividualLL.KF.gr(eta, theta, OMEGA, Model, Data, GradSTEP = 1e-04, GUIFlag = 0,
fast=TRUE,Linear=NULL)
LinKalmanFilter(phi, Model, Data, echo = FALSE, outputInternals = FALSE, fast=TRUE)
LinKalmanSmoother(phi, Model, Data)
ModelCheck(Model, Data, Par,DataHasY=TRUE)
logit(x, xmin, xmax)
invlogit(y, xmin, xmax)
APK.KF
evaluates the population likelihood function.
APK.KF.gr
evaluates the gradient of APL.KF.
APL.KF.individualloop
contains the innner loop over individuals for APL.KF.
CutThirdDim
removes third and higher dimensions of dim-attribute for an array and thus creating a matrix.
ExtKalmanFilter
Performs a Extended Kalman filtering.
ExtKalmanSmoother
performs a non-linear Kalman smoothing.
IndividualLL.KF
evaluates the indivdual neg. log-likelihood function.
IndividualLL.KF.gr
evaluates the gradient of the indivdual neg. log-likelihood function.
LinKalmanFilter
performs a linear Kalman filtering.
LinKalmanSmoother
performs a linear Kalman smoothing.
ModelCheck
checks for dimensionalities and model objects. Furthermore it tests the Model objects and the dimensions in the Data set.
logit
gives logit transformation of a vector.
invlogit
gives invlogit transformation of a vector.